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The linear spatial problem of gravitational waves on the surface of a viscous
incompressible fluid of infinite depth which are generated from a state of
rest under the action of a surface pressure and an initial disturbance of the
free surface 1s considered. By successive application of a multiple Pourier
transform with respect to the coordinates and a Laplace transform with res-
pect to time, a solution of the problem 1s obtained in closed form. The
solution of the axisymmetric problem is obtained as a particular case. Asymp-
totic formulas which make 1t possible to easily solve specific problems are
then obtained.

1. The equatiocn of motion, boundary and initial oonditions. Let us
locate the origin of a rectangular Cartesian coordinate system on the free
surface of a fluid in a state of equilibrium. Let us direct the z-axis
vertically upwards and the x and y axes in the horizontal plane. We
shall assume that at the initial moment of time the velocitles of the fluid
particles are equal to zero and at that the form of the free surface 1s glven
by z = { (2,9, 0) = I, (z, y); the pressure on the free surface is given by
P = po (2, y,t) and the frictional stress vanishes there. Under the usual
assumptions of linear theory, neglecting the nonlinear inertial terms, we
obtain the equations of motion

ov, 10p : ;
—_ . = = T pA 11
5= 505 VA @y P =PTRE (1.1)
and the continuity equation
dv, 8vy dv,
NI TG O I 1.2
5w Ty T 0 (1.2)

where p, 1s the hydrodynamlc pressure. In addition, we shall have the fol-
lowing boundary conditions:

Pan="Po Py =0 P =0 on =ty 1) -3
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Uy =0y =0,=0 for ; = _ oo, Ve =V =0,=0 tfor t=0 (1.4)

Here z = c(x, Vs t) 1s the equation of the free surface.

We shall assume the motion to be slow, the wave amplitude to be small and
the waves to be gently sloping. It 1s then possible to consider that the
normal to the free surface deviates only slightly from the vertical and to

set
pntlz Pzx = 0’ pm,zpw = 0 for Z=§(x: Y, t) (15)

» dv, dv,
PPz =— P T2 o = —p+pgl+2m-=—p (2,90

Let us apply conditions (1.5) ti the undisturbed surface z = O . Taking
into comnsideration that for small oscillations

i
?,—f = (%), L=20C (2 y) + S (v2),_ 0t (1.6)

0
we obtain from (1.5)

v, dv, va dv,
—a;—+_a?:O’ W—-}—W:O for z =0
! v, (1-7)
p—opg & vdt — 20 5-= po (2, y, t) + gL (2, ¥)

[

2. Appliocation of the Fourier and Laplace transforms., To solve the prob-
lem we shall apply the multiple Fourier transform [1] with respect to the
variables x and y and then the Laplace transform [2] with respect to
time ¢ .

Let us multiply the equations (1.1), (1.2) and the conditions (1.4), (1.6)

and (1.7) by -t exp [i (Ez + ny)] dady

and Integrate the results with respect to x and y from —« to + o ,

Assuming that the quantities p, v, v,, ¥, 0v./0x, 0v,/0z, dv,/dy,
dv,/ dy, 0vy/ dz, dv,/ 0y vanish for |z| — oo, |y| — oo, we have

0X i 02X
o = 7P+ (Gm — X —n'X)
Yy in 4
W:;P+V(m—§2Y—n2Y)
@2.1)

oz 1 0P *Z
=5 (= ¥2 -2

9Z . pv , X . N _ inZ=

5; —it(EX+nY)=0, F-—i8Z=0, -—inZ=0
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[
P——pgSZ&-2p%§=:Pw+pﬂ% for =0 @2.2)

]
X=Y=2=0 for s=—00, X=Y=Z=0 fort=0 (2.3)

Here the Fourier transforms of the functions v,, v,, v,, P, {, {, &and p,
are denoted, respectively, by X, ¥, Z, P, H, B, &and p,. It 1s assumed that
the Fourier transform is applicable to the quantities under consideration.
Tsaking into account that the fluld motion arises from & state of rest and is
induced by the surface pressure p,(x, y, t) and the initial disturbance of
the free surface {,{x, y), it can be considered that the indicated condi-
tions will be satisfied if Fourler transforms are applicable to the functions
Dofx, vy t) and Colx, y). (If p~ g = const for |x|~= and |y|-=, 1t
is then possible to consider the quantities p — ¢ and p, — ¢ 1n place of
p &and pP,, respectively, in the equations and the boundary conditions).

Let us now apply the Laplace transform with respect to ¢ to Equations
{2.1) and the boundary conditions {(2.2) and {2.3). Taking into account the
initial conditions (2.3), we obtain

- +e+w)r+Pr=0
e —(2+e+nw)r+ ”‘P°——0 o
e (yrew)z é”ifl-—o )

EX° + iny° — 4 =

P—§Tumﬁ=mwwﬁo

dx o _ aye o
Ty — IEZ - — =0

X°=Y"=2°=0  for 1=—00

for =10 (2.5)

(2.6)

H = H,+ s1(2°) (X° (sy=g¢ St X(tye® dt)
o

Ze=(y
Here 8 1s the transform parameter.

Eliminating 1°, ¥ and p° from Equations (2.4) and the boundary condi-
tions (2.5), we obtain Equation
dvzZ° s i 2 o
???“(?+2’) +)“( —§*?)Z = 0 (2,7)

(=g
for Z2°, and the boundary conditlions
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d(:fﬁ +222°=0  for z=0
&z° g, . (2.8)
375 ( +3r ) 2z psp‘ (P o+ pgH,)

2=2=0 ftoxi=—w (2.9)

The solution of Equation (2.7) which satisfies conditions (2.8) and (2.9)
has the form

Z° = r (pgH, + P,°) [p® (r, )17 [2r2 exp (z V17 + s/v) —
— (2r* — s/wv) exp (rz)] (2.10)

D (r, s) = (272 + s/v)2—4r3 (12 + s/v)" - grv®

Using the relations (2.4) and (2.5) for 2z°, X°, r°, g° and p°, we find

X° — Ei (pﬁgo(;}’_ :;oo) [27- (r2 . %)Vte(z Vivtsiv) . (2,.2 + %) e(rz)]
v — _ in(pigo(:l’— £o°) [2,. (r2 + %)‘/’e(z Vs _ (2,2 + %) e(m]
H°=HO—%%—§LD) (2.11)

3. Determination of the originals. Let us set u = (F*+s8/v)¥ 1n
Expressions (2.10) and (2.11). Next we shall use a second expansion theorem.
In accordance with [3] we find the originals of the transforms

. (3.1)
+ rVW)]= filry 2, t)

ewr =5 %[e-r l2l erfc (2':/' -V vt) + el erfc( Vl__
euzéL[ e;rlzl erfc( ert) erfc( V_—{—ert”

u—u, 21r 2 'V'
Tl uexpl—uy | 2| 4 (w2 —r?)vi] z — x
=y k — erfc(2 'VI%T — uy Vvt) =fy (r, z,t)

— 2 — X
u(u—ue) 5 — rugefr (F Vi) — r? 4 wet™ P erfe (ux V' vE) = f5 (r, t)
where u, are the roots of the polynomial
F(r,u)=ut+ 2r%u® — 4r3%u + r* 4 rgv?

We shall use a convolution theorem. Since
t

Fi(9) Fy (95 77 ya—nnmw

or

t
TR@ORE> (ht—1h@d
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then from (2.10) and (2.11) with regard for (3.1) we find

Ly
;_gm]drz
k

= ukF’ (uk)

H=H,— %[ngo + Py (t —7)] [ TIYE

_ __rpgH fs" (r, 7)
_I{O M [ 7‘3—}—)\.3 +V(k—]2)ltﬁ"(uh)}

t
_-&Spo(t—f)[ 3 T'k3+ (llk2—' )fa (rr)Jd‘C
0

7= 2{%3 logH, -+ Py (t — 1)) [z‘;(;zrxz) n Z L{A‘;‘(r(T,T)) ]dr - (3.2)
T g[ngoJrPo (t—) [—; + }_‘—ZT){ - ”]dr
Y = »{—ﬂm /i rPo<t~r)1k 1 B Ea
+ ‘f—,§ logH, + Py (t — )] [ it 2 \‘ v’ :k’:){:k;” i Jdt

t
Ay (1 — 1) £ (7, )
P tosto 4 Pute— o) [ - d+m+>‘ ™ | ax
0

(W =g /v, F'(w)=4(uw?+ riu,—r3)

4, Pourler inversion, Using the inversion formulas for Fourier trans-
forms, we obtain solution

0 o0 [ee] co
1 . —i(Ex . ___1_ \ \ —i E,xw' )
vy = oo \ SXe i Geeny) dEd, vy =5 S _S,OYE Gxin) dEdn
—00 —00 —x
O o o (4.1)
LY Sigx = L U ( peizemn
v = o \ SZG Geowd didn,  p = 5 S \ Pe-i Goim) dEdn
—20 —00 —00 —00
1 [se] o0
{ = oo \ \ He-i Gromy) dEdn

Here the functions X, ¥, Z, p and ¥ are determined from Formulas (3.2).
The roots of the polinomial p(r, u) which depend on ¢ and n appear in
these functions. If these roots are known, the solution of the problem under
consideration is then obtained in the closed form (4.1). Let us set y=pra.
Then

F(ryu) = r*(a* — 20 — 4a + 1 + A% = rF (r, o) (4.2)
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Examination of the polynomial F,{r, o) shows that for r < 1.19813x it
has two pairs of complex conjugate roots and for r > 1.19813)% it has two
real roots and one palr of complex conjugate roots. In this connection the
integration in (4.1) must be split into the intervals () L r<<1.19813 A and
r > 1.19813 A. Substituting into (4.1) the expression for g from (3.2)
and interchanging the order of integration (*) with respect to ¢ and &£
and n , we obtain for the free surface

! oo o
t=to— g 5 01 |\ oo + ot — 0 [ +
0 |

—00 —00

}2 f3 1’;i:'(uf)] —i (Zxeny) dgd,"q} dt =
1

0 4 k
- r3 VP (ug—r?) f55 (r, 1)
= Lo — 2np. & & Ho[—rs—i—?\,a +]2'1 w F” (uy) :IX

—CO X

T -

oo W
Py 1 :
Xe—z(,.wny\dgdq-m \ S R Pyt — T)["’ ﬁ"_ﬁ?!- +

LY,

—)

<

‘ a9 k
a "(“kz‘—"")fs (r, ©) e
—i (EX+71)
+ 3 T ]e dEdndv (4.3)
k=1
Applying a convolution theorem for Fourier transforms, we find

[o2 TN o]

Tz, y, ) =G ——%: S \ Lix—u, y—o0) 0 (4,w, t)dudw —
~{>'J——-‘3:

8

(2]
R \ Pl —u,y—w, t— 1) G, (u,w, 1) dudwdt
< o

=00 -=2Q

—
2ap

after some ma.nipulati_on

i o> o«
> d¥ {
=0 2wpv?1—33 J gl (2 —w, y —w)+ py (2 — o, y—w, t— )] x
0 —20 —28
x G, (u, w, 1) du dw dv
1 ¢ 23
G = T3 S \ P, (r, t) e-l ExrdE gy (i=1,2 (4.4)

*) For » = 0 in (4.3) only the integral with respect to £ and n
remains and the interchange of the order of integration is not required. The

valldity of such an intergange in the general case will be seen in what fol-
lows.
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(4.4)

4 cont

Yy (r, 1) = F—?T + 2 lhag (@F — 1) (® + ap — 1) P17 — agerf (1) vE) —
k=1

—1 4 a,? exp [ver? (@ — 1)) erfc (— rag )/ ve)] = (r® 4 A3) - prl (r, 1)

4 J—
[, exp [ver2 (2,2 —1)] erfe (— ra, V vt) — erf (r Vvt)
o (r, 1) = 2 — : 1

r—1 4 (84 a, —1)

= 21 % (1)
k=1
Taking the symmetry of the functions y, with respect to the £ and n
axes into account and passing to polar coordinates, we obtain
1, oo
Gilz, . 1) = — \ \q;i (r, t) cos (Rr cos 0) dr df
0o O

R = 22 g2, 0= (R, 7) (i=1,2) (4.5)

Depending on the specific problem one or another form of the formulas
(4.4) can be applied.

In order to avold determining the roots g, of the polynomial g, (r, a),
it is expedient in the calculation of @, to make the following substitutlon
in the 1ntegrand:

ro=r(ag) = — A (ot + 202 — bag + 1)77 (4.6)
After the 1lndicated substitutlon, we have

Py 4
Gy, B) = — \ 2\ (r, 2) cos [Rr (a) cos 8] dox df +

k=

b .

, cos (Rr cos 0) dr db .:{0 for =2 (4 7

i \ S r3 a3 TR for i=1t :
0o 0

The branch of the curve, corresponding to the root qa,, along which the
integration must be carried out, is denoted by [,

0 ey Substituting o = g + i» in the

r=0
L\‘ / polynomial f, (r, a) and equating
9 '

the real and imaginary parts to

zero, we obtain

0 068237 (4.8)

+ 122 —bda+ 1+ WP =0
b= +(a+1—al)”"

r=0 4at + 4at — 1 + AMa?r3 =0 (4.9)

N
& \&
mem——fmm
o~
N

Fig. 1



Spatial problem of waves on the surface of & viscous fluid 563

a8 previously indicated, the second equation of {4.8) gives only two roots
for o when r>>1.19813 A. The first equation of the system (4.9) gives a
relation between the resl and imaginary parts of the roots, and the second
gives a relation dbetween the real part and the parameter. An exemplary graph
of the branches 7, 1s presented in the figure; the direction of the path
of the branches I, as r varies from -e to +« 18 shown by arrows,

Developing the sum in (4.7}, we obtain

Yy 1
G (z,y,t)= «%{ S S @, (2) cos [Rr (a) cos 6] da df —
0 0.6823
1}2"7! 0-68.23
-\ & ¢, (&) cos [Rr (o) cos 8] da df +
0 0.2556
MYy n
+ S § @; (@) cos [Rr (a,) cos 6] da, df +
0 Ia
+ \ { @ () cos [Rr (ay) cos 01 da, a8 + (4.10)
o I
l/z‘ﬂ
-+ & % @, (ag) cos [Rr (ug) cos 6] dag df 4
0 Ls
!(ii -

1;’,‘3200
+ S g @; (as) cos [Rr (a,) cos 8] da, db + S S
o 0

o I
2 J— ——
@1 (@) = é-w%“)“” [— aerf PV vi) — 1 + a2t @1) erfe (ra )/ ¥1)]

1;¢08 {Rreos§)

O ds}

Il ) 2 g - b 1 for i=1
@, (0) = W{aﬁe"” e-Verfe (—ra YV vt) — aerf (P VW), 1= {0 for " — 2
In order to reduce the integration in (4.10} to the real dimain, we shall
use the relation (4.9) between the resal and imaginary parts of the roots and
the relation between r and the real part of the roots g . We have
b=(a+1—aN r(atib)=h(a) = ra" (4a® + 4at — 1)
~2
do=d(atid) =datid =(1+2F5")da (4.11)
Taking into account that a, o, 80d ay, a, are complex conjugate roots,

we reduce ¢, (x, y, t) to the form
o

1
Gi(z, 4, t) m——i— S \ @, (a) cos [Rr (a) cos 8] da dO —

(4.12)

¥y 7 0.6823
-5 S \ @ (a) cos [Rr (o) cos 0] da db —

n
0 0.2956
Yan oo

- —;!— \ S [(Pi (a' + "b) +(P* (d — ib)} cos [Rh (a) cos 8] da d8 +

¢ o.d823
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12 -0.6478

: i (cont,
T K g [9; (¢ + ib) 49, (a — ib)] cos [Rh (a) cos 6] da db — ((:2?123
0 —00
— 20T @ )~ e — )] (204 L) s @o0s0) 4, gy
0 0.6823
Yo m-0.6478
+r  e@t ) — g0 ) (204 L) oo lPr@cos0l gy gy
0 — 00
le 1,/,\-:§°cos [Rr cos 0] dr db ) { for i1
0 0

It 1s easily shown that
Re {etta+dr-Dh* @ vierfc [— h (a) (@ + ib) ¥V vi]} = H,e (@

oo}

H, = 2n-% { ek @V cos [26h (a) 2/ 1) dz

0
Im {etaribr-Dnt@vzerfc [— h(a) (@ -+ ib) YV vi]} = Het @

[oe]
H, = 23-:/28 e-Ytraah (@ x VT gip [2bh (a) z V;,T[] dr
0
The determination of the integrand functions does not-present any parti-
cular difficulty

2h2 (a)

¢ (@ + ib) + ¢, (@ — i) = 3A8 (a8 B8 1 -+ 2a2hE — 2a% | 257 X
x{— (@ — v — ) ert (b (a) Vve) — 2 a_,_f_”zbj“ 4
+ Ha (a® — 3b® — 1) e @ — Hob (b* — 3a* 4 1) 6""""“’}
. . , 2h?
i g, (@a+ ib) —g(a— ib)] = I (@ + b1 _*_(gaa)zbz_ 2a% gbz)
{Zab erf (i (a) Y vt) — L;;%—Zﬁ—i) -

— Hp (B — 3a® + 1) e @ — Hya (a® — 3b* + 1) e—"’-’"(a)}

o (@ + ) + @y (a— ) = LD [ er(h (@) VVT) + Hige @ —

— Habe @

19 (@ + 1) — @y (0 — )] = — TG [Hy ae @ v 4 H, beh@ ]

The integrals g, and g, are not obtained 1ln elementary functions. We
shall calculate them approximately, using the method of Laplace [4].

It is now easily established that the integrand in (4.3) is continuous
and the integral with respect to r 1s absolutely convergent. Consequently,
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the interchange of the order of integration in (4.3) 1s valid.

5. OCaloulation of integrals and ocomputation formulas. Let us consider
the integrals

(ay, b)) = \ exp (— a® + 2qa,2) cos 2b; xdz
6.1

(ay, by) = \ exp (— z% + 2a,x) sin 2b, zdz

L/?S Omg

Applying the method of Laplace to the calculation of these lntegrals and
requiring that theilr approximate values coinclde with the exact ones for
a,= 0 and = 0, we can write

fi (ag, by) = Y, Vv exp (a2 — b,2) [erfe (— a,) cos 2a;b, — erf (by) sin 2a,b,]
fa (ay, b)) = Y, V@ exp (a2 — b;2) [erfe (— a)) sin 2a.b; 1 erf (b)) cos 2a;5,]

Setting a, = ah (a) V' vt, by = bh(a) ¥ vz, here, we obtain

Hy =~ exp [/ (a) (a® — b%) vz ] {erfc [— ah (a) V vt] cos 2abh? (a) v© —

— erf [bh (a) V v=] sin 2abk? (a) vt} 5.2)

H, =~ oxp [12 (a) (a® — b2) vx] {erfc [— ah (a) V V<] sin 2abh? (a) vt +
4 erf [bh (a) ¥ v cos 2 abh? (a) vt}
Let us now proceed to the calculation of the integrals which appear in

(4.12), applying the method of stationary phase.

It 1s easlly established that the asymptotic value of the integral differ-
ences with respect to the real roots is equal to zero. Integrals which con-
tain a trigonometric part of the form cos [Rh (a) cos0], are also asymptoti-
cally equal to zero. Conslderation of the integrals which contain factors
of the form

cos [Rh (a) cos 0] sin 2abh? (@) vt = 1Y, {sin [Rh {(a) cos 8 — 2abh? (a) (vz] -+

-+ sin [RhA (a) cos § -+ 2abh? (a) vi]}

cos [Rh (n) cos §] cos 2abh? (n) vz = 1/, {cos [Rh (a) cos § — 2abh? (a) vt} +
-+ cos [Rh (a) cos 8 4 2abl? (@) v=1}

lead to equations for determining the stationary points
— (8a® -+ 4at -+ 1) (4a® 4 4a* — 1) (@3 +a — )" F
T alw (182 + 24a” — 5248 -1 8a% — 20a® - 204® + 14a — 11) = 0
. . (5.3
— (8a% + 4a* + 1) (4a® + 4da* — 1) (@® + 0 — )P )
I e (16a® 4~ 2447 +- 5248 + 845 4 20a* 4+ 2043 + 14a -+ 11) = O
(@ = Avt (2R cos §)7) (5.4)
To find the exact relation of g to w 1s very difficult, but 1t 1s
possible to obtain approximate formulas for small and large values of w

If the value of w < %, 1t can be regarded as small; 1f the value of
w > 2, 1t can be regarded as large.

1. For small values of w and b = (g +1 — a")é
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[k (a) + 4abh? ()& ] AR c0s 6 — a = 0.6823 + 0,065 ¢
[k (a) — 4abk® (d)0 ] AR cos 6 — a =~ Y,V To (5.5)

2. For small values of w and b= (g®+1 + g-*)t

[k (a) 4 4abh? (@) ] AR c0s® — there are no stationary points

a =~ 0.6478 + 20w3¥ {a < 1.8)
k(@) — 4abh? AR cos 6 — 8+, .
[k @ — dabl o) ] 42 cos 0 — { * Y eote O
3. For large values of w and » = (g®+1 — a"‘)t
[k (a) + 4abh® (@) ] AR cos 0 — a =~ 1.02367 — 0.5To™1

{h{a) — 4abh® (a)w ] AR cos 8> e =~ 1.02367 + 0.57e 1

For large values of w and b= {g°+1 + a"‘&i there are no ststionar
points. It 1s possible to show that for g < 1.8 the integrals in (4.12
can be neglected.

Let us consider the case of small values of w (w < i). The method of
stationary phase gives the following formula

B
Ve 0 a=[grar ] swen (W@ £ 1 L) [1 40 (7‘-":)] 5.8

where t 18 a ststionary point of the function A(t) (a < v < g), and &
is a large parameter. The sign of the exponential term (& im 1s taken
to be the same as the sign of xh"{r).

After some calculations we obtain from (4.10)

1am

. 2.3 542 2
G1==—S Vg exp( _vii._.,.)cos[—{t—— i ]X

8R3 cos* 0 V'R cos 0 " BRYcos'® 4 4R cos®
0

[+ol7mw)]o

1 /2“

Vg gvet Vg Vg [ et ] X
G = S 16 (R cos 0)Y e"l’( m) - [_4" 4R cosb |’
0

/ 1
pd {1 + 0 (m)} d6 (Ar — o0} 5.9

To calculate the integral with respect to the variable ¢ we again apply
the method of stationary phase. In this case 6 = 0, from whence it follows

oo () o) oV )
G sy 2R P { sre | (43 To\vir) T pry

v ] (29 (745) +o( "?f’?)]
6= S yem e"”['— 834]5‘“(412 Yo \yaR) T e

(AR -» o0, gt*/ 4R — 00) (5.10)
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We finally obtain

t oo oo
1 d
gmma=@umw~57%;mﬂg Sb%&—%yww+
0 —00 —c0

+ rle —u,y—w, t —1)] Gdudwdr =

oo o
_ g |
=L@+ ey ) ) Gy —w) G () dudu—
t o w 00 —® (5.1%)
e
—~8V§—pn S S S Po(® — u, ¥y —w, t — 1) Gy (u,w, 1) dudwdv

Q 00 —00
In the case of axial symmetry Formula {5.11) takes the form

P A o}

£ - VBN cos 8L -
CMO~QVH'wVﬁ§§Qm“m”“ﬂ”stm%mmm“

.

an

too
&8 - g -4 (— ........ngs) in £% Rd Rdgds =
§V2om §§§ Dpo (B, t' — %) 18R exp BR. sin iR, d Rdgds

41

t 9n co
_ S S 2 W -
= Lo (r) — 16 V‘an dt §§ § [pglo (R) + po (R, t — <)) x2R,™® X

vgieh ot
X exp (— —gﬁzz) cos 4g_31— Rd Rdgd= (5.42)

R; = R% 4 r® 4- 2rR cos @ (AR — o0, gt¥/ 4R — 00)

Since the magnitude of A = (gv®)'" 1s large for water, Formulas (5.11)
and {5.12) are suitable practically for all values of r different from
Zero.

Formulas {5.11) and (5.12) give an asymptotic expression for determining
the form of the free surface for small values of w (w < i). Further solu-
tion is possible only after prescribing the form of the functions {,(x, y)
and p, (Jh Vv, t)-

6. Partioular oases, For the mechanical integration of the obtained
results, let us consider some particular cases.
1. Set
Do = 0’ go =A (2“' ,.)-15 (T), 2= z? + ys
Prescribing such conditions on the free surface corresponds to an eleva-

tion of a finite volume of fluld in a small area near the origin of the
coordinate system. Since r 8(r)~0 , we then obtain from {5.12)

A (W) ; .
Cn 0 =4 gimene (=) oo [”O(ﬁ)”( E;*)J
(Ar —» 00, g1® (4r)" — 00) e

Here the formula
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o0

Vrnsmar=10
has been used. °

Let us assume that the oscillation of the level 1s observed at a given
place. Then it follows from Formula (6.2) that due to the presence of the
factor * the amplitude of the oscillation at first increases and the period
of the oscillation decreases. But due to the presence of the exponential
factor the amplitude of the oscillation begins to tend to zerc with time;
at the place under consideration an unlimited reduction of the amplitudes
and periods of oscillation are observed. This characteristic does not occur
in the Cauchy-poisson problem for an ideal fluid. The free surface of the
viscous fluid in this case is a serles of annular waves propagating with the
velocity o = 2r¢~!.

2. S8et
=10, po= Q3@

This denotes that at the initial moment of time a pressure impulse acts
on the surface of the fluid in a small area near the origin of the coordinate
system. From Pormula (5.11) we obtain

o Qe Vet oo EC L _’?Z)
2T 8V2 oxp (—— 8r4)sm 4r[1+0(Vﬂ->+0< gﬁ[]

{(hr — 00, gt* (4}t — oc) 6.2)

Prom the expression obtained it 1s seen that the picture of the free sur:
face in general coincides with the corresponding picture for an ideal fluid.
The difference consists in that for r - O there is no unlimited growth of
amplitude, which occurs in the case of the ideal fluld., For = 0 we
obtain the well-known result for an ideal fluid [5]. Formula z6.2) permits
a solution to the problem of ship waves on the surface of a viscous fluid of
infinite depth for straight and curved ship course lines.

3. Set
=0, polz,y, )= Q3 (x)d(y) (1 —cosar)

It can be considered that an oscillator is acting on the fluid in a small
area near the origin of the coordinate system. Using Formula (5.11) and
applying the method of stationary phase, we obtain

. E%exp(a?\)ﬁ[%_/ozrim]{i—%a(v‘%)—&'
VR ]

(hr — 00, (47 gt — 00, g (0%7)7 — 00)

The free surface represents progressive waves whose amplitudes damp with
distance from the origin of the coordinate system and which are propagating
with the velocity ¢ = go~'.

In all cases we obtain the well-known results for an ideal fluld at v= 0,
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