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The linear spatial problem of gravitational waves on the surface of a viscous 
Incompressible fluid of Infinite depth which are generated from a state OS 
rest under the action of a surface pressure and an lnltlal disturbance of the 
free surface Is considered. By successive application of a multiple Fourier 
transform with respect to the coordinates and a Laplace transform with res- 
pect to time, a solution of the problem Is obtained in closed form. The 
solution of the axlsymmetrlc problem Is obtained as a particular case. Asymp- 
totic formulas which make it possible to easily solve specific problems are 
then obtained. 

1. llrr rqwtioa of motion, boun6Wy ud Mtlal 0ondltMnm. Let us 
locate the origin of a rectangular Cartesian coordinate system on the free 

surface of a fluid In a state of equlllbrlum. Let us direct the a-axis 

vertically upwards and the x and y axes in the horizontal plane. We 

shall assume that at the lnltlal moment of time the velocities of the fluid 

particles are equal to zero and at that the form of the free surface Is given 

by 2 = 5 (2, Y, 0) = 50 (5, Y); the pressure on the free surface Is given by 

p = p,, (3, y, t) and the frictional stress vanishes there. Under the usual 

assumptions of linear theory, neglecting the nonlinear Inertial terms, we 

obtain the equations of motion 

au, 
al= 

__lap _1- 

P ax 
v Au, ("YZh p = p1 -t pgz 

and the continuity equation 

(1.1) 

(1.2) 

where p, Is the hydrodynamic pressure. In addition, we shall have the fol- 

lowing boundary conditions: 

P zz- 
nn PO9 P,,,, == 0, p,, = 0 

I 
on I = 5 (I, y, t) (4.3) 
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V, = Vv = V, = 0 for z=-a3, V, = z7v = V, = 0 for t = 0 (1.4) 

Here 2 I C(X, Y, $) Is the equation of the free surface. 

We shall assume the motion to be slow, the wave amplitude to be small and 

the waves to be gently sloping. It Is then possible to consider that the 

normal to the free surface deviates only slightly from the vertical and to 

set 
P,,, = Pm = 0, P,+, = Prv = 0 for z = 5 (I, y, t) (4.5) 

P nn = Pzz = - p1 + 2/b 2 = - p + pgc + 2p f$ = - PO (G Y9 0 

Let us apply conditions (1.5) ti the undisturbed surface z = 0 . Taking 

Into consideration that for small oscillations 

f$ = (2”*)z,o’ 5 = 50 (4 Y) + 4 (l-‘z),,o~~ 
0 

(4.6) 

we obtain from, (1.5) 

% 
-&-.. + a; = 0, a+ + a$ = 0 for z =o 

P - pg s v,dt - 2/4 a; = PO (xv Y, q 
(W 

i- PgL (x9 ?A 
0 

4. Appllortlon ot thr lourl8~ bnd L@boo tr~iorm. To splve the prob- 

lem we shall apply the multiple Fourier transform [l] with respect to the 

variables x and y and then the Laplace transform [2] with respect to 

time t . 

Let us multiply the equations (l.l), (1.2) and the conditions (1.4), (1.6) 

and (1.7) by 
1;2n-1 exp 1 i (Es + qy)l dxdy 

and Integrate the results with respect to x and Y from -a to + .= . 

Assuming that the quantities p, v,, v,_,, v,, b’v,/ax, dv,idx, dv,/dy, 

a~,/ ay, av,iax, av,/ay vanish for lx1 .+ oo, Iv1 ---* oo, we have 

ax 
at=p iSP+v(ag-E2X-q2X) 

ay 
-X=p %+v(ag-g2Y -lfY) 

(2.1) 
az -;-= _.g+ E”Z _ $2) 
CJt 

az 
7--i(~X+llY)=O, ‘g---igZ=O, ~y-iqZ=O 
dz 
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P-pg~zdt -Z&g= P@+Pg& for z=o 
0 

(2.2) 

X=Y=Z=O for c=--00, X = Y = 2 SI‘ 0 rot t = o (2.3) 

Here the Fourier transforms of the functions v, , ur, v, , p, g, Co and p0 
are denoted, respectively, by X, Y, E, ‘p. K, rr, and PO. It i8 iwmned that 
the Fourier transform is applicable to the quantities under conttlderation. 
Taking into account that the fluid motion arises from a atate of rest and ie 
Induced by the surface pressure p,(x, y, t) and the initial diaturbanae of 
the free surface &(x, ~1, it can be considered that the tidicatad condi- 
tions will be satisfied if Fourier transform8 are applicable to the functions 

p,(xt Y, t) and Cob, v). (ff p - a - const for [r[ *m and f&l*=, it 
is then possible to consider the quantities p - Q and p. - 0 In place of 

p and Pi,, respectively, In the equations and the boundary condltione). 

Let us now apply the Laplace transform with respect to t to %@atiOns 
(2.1) and the boundary conditions (2.2) and (2.3). Taking into account the 
inltlal conditions (2.31, we obtain 

x”=Y”=z”=o for gzz-00 

(2.6) 
H = H-0 -F s--l (Z”),,* (x0 (s) = s i x ftf e-at dt ) 

0 

Were 8 ia the transform parameter. 

Eliminating R, yo and po from Equations (2.4) and the boundary condi- 
tions (2.5), we obtain Equation 

for Zo, and the boundary condltlon8 
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g + 222” = 0 for z = 0 

$&- (:+3r2)!5 sI1 PgrBp = ‘ape + pgHo) cL 
(2.8) 

r=g=-0 for zs-_oo (2.9) 

The solution of Equation (2.7) which satisfies conditions (2.8)and (2.9) 

has the form 

2” = r (pgHo + PO”) [@I (r, s)l-1 129 exp (2 v/r2 + S/Y) - 
- (2P - S/Y) exp (rz)l (2.10) 

CD (r, s) = (2r’ + S/Y)2 - 4r3 (r2 + sl v)” + grV2 

using the relations (2.4) and (2.5) for 91 x0, P,P and PO, we find 

_yI = _ 4i (PM0 + PO01 
@ (r, 4 

[2r (r” + t)“,’ v,.‘+s!v) _ (2r2 + +) e(rZ)] 

y”= - iq ‘P.g+~~ [&. cr2 + $3z J53-4 _ (32 + t) @,-J 

H” = Hc _ r (PgHo + PO”) 
pv@ (r; 4 

(2.11) 

3. DabmnlnNlon of thr os-Qlnalr. Let u0 set u = W+ 8/v)* in 

Eqresalona (2.10) end (2.11). Next we shall use a second expansion theorem. 

In accordance with [3] we find the originals of the transforms 

24 ? - euz +j _ 
e-p IZI 

U-4 K [ 
- erfc -$-& - 

2 r-l+ ( 
rv,t) +erfc(*+rJGt)] X 

X 
e-r 111 

----l- 
.ka exp[- Uk 1 ’ 1 +  t”k2 - @) vtl erfc 1 Z 1 

r + ‘k UkB - r= 
_ - ukvi?) = fl(r, z, t) 
2 Jfvt 

u (u - u&l+ - ruk efr (r fyt) - r2 + uk2e(uk-r*) ” erfc (uk I/ii) = fsk (r, t) 

where ut are the roots of the polynomial 

F (r, u) = u4 + 2r2u2 - 4r3u + r4 + rgve2 

We shall use a convolution theorem. Since 

F, (4 F, (4 + $ i fl (t - r) fs (z) dz 

or 0 

t 

; F, (4 F, (4 -+ \ fl (t - 4 f2 (4 dt 
n 
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then from (2.10) and (2.1 1) with regard for (3.1) we find 

(13 = g / v*, F’ (u,) = 4 (uk3 + riuk - r3)) 

4, Bourlrr lnvrrrion. Using the inversion formulas for Fourier trans- 

forms, we obtain solution 

&-i ftr+riy) &Q, 

--x, -co 

pe-i (Z.c+ VIY) dEd7 

4--00 

(4.1) 

Here the functions X, Y, Z, p and fi are determined from Formulas (3.2). 

The roots of the pol:nomlal F(F, u) which depend on < and 7 appear in 

these functions. If these roots are known, the solution of the problem under 

consideration Is then obtained in the closed form (4.1). Let us set u=~(I. 

Then 

F (P, u) = r* (cc* - 2%~” - 4a + 1 + h3r3) = Iv, (f, cc) (4.2) 
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Examination of the polynomial Fl(Fr a) shows that for r e 1.19813k it 

has two pairs of complex con&gate roots and for r z= 1.19813x it has two 

real roots and one pair of complex conjugate roots. In this connection the 

Integration in (4.1) must be split Into the Intervals 0 < r \< f.19813 hand 
r> 1.19813 A. Substituting into (4.1) the expression for H from (3.2) 

and interchanging the order of integration (*) with respect to t and < 

and rl , we obtain for the free surface 

(4.3) 

Applying a convolution theorem for Fourier transforms, we find 

0.2 ;r) 

5 (z, j/, t> = 5” - ;;” y -- 0,) c, (24, W, 1) du dw - 

---a> -2; 

1com 
1 * 

’ -~ 
\c i 27v I; u 

p. (x - tl, y -- w, t - T) G, (cq tu, t) &L dw dt 
J 

0 --co ---30 

x G, (II, up, T) du dw dt 

*) For P = 0 in (4.3) only the Integral with respect to 5 and q 
remains snd the interchange of the order of integration is not required. The 
validity of such an intergange in the general case will be seen in what fol- 
lows ‘ 
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(4.4) 
cant 

% (r, 0 = & + i: [4ak (ak - 1) (ak3 -I- ak- 1) PI-‘I---aakerf (rgGt)- 
h-=1 

- 1 + ah.’ exp [vtr* (ah2 - I)1 erfc (- rakI/Z)] = (r3 -+ k3)-’ + iqlk (r, t) 
k=l 

’ 
$2 (I*, 1) = yJ 

[rk cxp 

x=1 
4 (aks + czlr - 1) 

k=l 

Taking the symmetry of the functions $, with respect to the 5 and q 
axes Into account and passing to polar coordinates, we obtain 

Gi(x, ?/, t) = f \ \qi (r, t) cos (RF cos 0) dF de 
0 d 

R* = 52 + y2, 8 = (R, I’) (i = 1,2) (4.5) 

Depending on the specific problem one or another form of the formulas 

(4.4) can be applied. 

In order to avoid determining the roots a, of the polynomial ~,(r, a)r 

It Is expedient in the calculation of 0, to make the following substitution 

in the lntegrand: 

r = I’ (ak) = - h (ak4 + 2ak2 - 4ak + I)-“” 

After the Indicated substitution, we have 

(4.6) 

Gi (2, y, t) = f \ x \ I/I; (F, t) COS [RF (ah) COS 01 daEidfl + 
; k=lik 

'I9 0s 

The branch of the curve, corresponding to the root ak,, along which the 

integration must be carried out, is denoted by Lt . 

Substituting a = 0 + tb in the 

polynomial Fi (F, a) and equating 
the real and Imaginary parts to 

zero, we obtain 

b=O 

(4.8) 
a* -t 2~2’ - 4U + 1 + h3F-3 = 0 

b = AT. (a* + 1 - K1)” 

4d3 + 4a4 - 1 + ?baa*r-3 = 0 (4.9) 

Fig. 1 
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irs previously indicated, the second equation of (4.8) gives only two roots 

for o when r>1,398f3h-, The first equation of the s-tern (‘c.9) gives a 
relation between the real and lma@nasy parts of the Touts, and the second 
gives a relation between the real part and the parameter. An exemplary graph 
of the branches L, is preaented In the figure; the direction of the path 
of the branches Lo a8 P varies from -(D to +a Is shown by arrows. 

Developing the sum in (‘r.?f, we obtain 

Gi (5, y, t) = -+ i”s’ [ q+(a) cos [Rr (a) CQS 01 dct UXI - 
0 0.6823 

% x 0.6323 

‘PI@) = r= f4 
331 (aa - 1) ;hg I-- a erf (r vi?) - 1 + u2ev”’ W-1) erfc (ra I/G)] 

In order to reduce the integratfon in (4.lOf to the real dlmain, we shall 
use the relation (4.9) between the real. and Imaginary parts of the roots and 
the relation between p and the real part of the roots Q . We have 

b = (a$ + 1 - a-If’*, r (a* ib) - h (a) = ha”* (4d -/- 4a4 - 1)“*” 

TaMn&z into account that as, aI and a*, a, are complex con:ugate roots, 
we reduce 0, (x, y, c) to the -form 

% x 1 
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'12 x -0.6478 

+ $ \ 1 ['pi (a + ib) +cpi (a - ib)l cos [Rh (a) cos 01 da df3 - ‘T3 

I,‘*- 00 
i ’ 

-- 
n 

\ 1 
0 O.GR"3 

[rpi (a + ib) - ‘pi (a - ib)] (2a + -$) ‘OS tRh$) ‘OseJ da de + 

. '12 x -0.6478 

+ ; \ 1 [qj (a + ib) - 'pi (a - ib)] (2a + ;) ‘OS lRh;;) ‘OS e1 da de $ 

“““;rR; ;F el dr de (i = 1, q, ri = i for i = 1 
0 for i=2 

It is easily shown that 

Re {,$@+ib)*-l)h* (")v~erfC [- h (a) (a + ib) I/rr]} = HI@'@) 9: 

H, = 2n-'h~p'+~~h (0) 'l'~cos [2bh (a) .+G] dx 

0 

Im {e(( a+ib)‘-l) h’ (~1 “7 erfc [- /a (a) (a -k ib) ~/VT]} = H++‘(a) VT 

11, = 2&/z y e-.y24-2ah (a) X J’F sin [ 2hh (a) r I/G] ds 

0 

The determination of the lntegrand functions does not.present any parti- 

cular difficulty 

cpl (a $- ib) + rpl (Q - ibj = 
2h2 (a) 

3h3 (a4 + b’ + 1 + 2a~be~-Za2f~@- x 

x 
1 

- (a2 - b2 - 1) erf (h (a) I/i%) - ?'"a$$;' + 

+- E_l,a (a' _ 3b2 _ 1) e-=h'@) _-2b (b2 _ 3a2 + 1) e-=h*(a) 
1 

i h ta + ib) - % ta - WI = .?h3 (a4 + b4 ,_ i’“; ti2b2 _ 202 + 2b21 x 

x 
{ 
2ab erf (h (a) v/yz) - b (b2 z rpb2’ I) - 

- HJ) (b* - 3a* + 1) p+@) _ H,a (a2 _ 3b2 + 1) e-vsh’(a) 
1 

cp2 (a + ib) + ‘p2 (a - ib) = %$ [ - erf (h (a) I/z) + Hlae-h*(@ “7 - 

_ If&e-h (a) ~5 ] 

i [(~*(a+ ib) -q2(a- ib)l = - 3 [H, m-h’ (a) VT + H, be-h’ (a) “~1 

The Integrals H, and ~~ are not obtained in elementary functions. We 

shall calculate them approximately, using the method of Laplace [4]. 

It Is now easily established that the lntegrand In (4.3) Is continuous 

and the Integral with respect to T Is absolutely convergent. Consequently, 
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the interchange of the order of Integration ln (4.3) Is valid. 

fl (a,, b,) = s exp (- x2 + 2n,z)cos 2b, X~X 

0 

03 
(5.1, 

fz (a,, b,) = 
s 

exp (- x2 + 2nlx) sin 2bI xdx 
0 

Applying the method of Laplace to the calculation of these Integrals and 
requiring that their approximate values colnclde'wlth the exact ones for 
cl =0 and b,= 0, we can write 

fl (a,, bJ zlI, Jf/m exp (al - b12) [erfc (- aI) cos 2a,bI - erf (b,) sin 2aIbI] 

fz (~7 b,) = ‘I2 I/mexp (aI2 - bc) [erfc (- aI) sin 2aIbI + erf (b,) cos 2aIbI] 

- 
Setting al = ah(a) JfG, bl =bh (a)JfvT, here, we obtain 

H, z exp [/P (a) (a2 - b2) VT] {erfc [-- ah (a) ~/VT] COS 2abh2 (a) w - 

- erf [bh (a) v/v”,] sin 2abh2 (a) VT} 
(5.2) 

Ii, z csp [I? (a) (a2 - b2) VT] {erfc [- ah (a) VG] sin 2abh2 (a) YZ f 

+ erf [bh (a) vq cos 2 ablil (a) ~7) 

Let us now proceed to the calculation of the Integrals which appear In 
(4.12), applying the method of stationary phase. 

It Is easily established that the asymptotic value of the Integral dlffer- 
ences with respect to the real roots Is equal to zero. Integrals which con- 
tain a trigonometric part of the form cos [Rh(a)cos0], are also asymptotl- 
tally equal to zero. Consideration of the Integrals which contain factors 
of the form 

cos [Rh (n) cos 01 sin 2nbh”- (n) VT = l/, {sin [Rh (a) cos 8 - 3abh2 (a) (VT] + 

+ sin [Rh (n) cos 0 + Eabh’ (a) v-i]} 

cos [Rh (a) cos f)] cos 2abh? (n) Y; = I/? (c.os [Rh (a) cos fJ - 2abh2 (a) VT] f 

+ cos [R/L (a) cos 0 + ‘c/b/G (o) VT]} 

lead to equations for determining the stationary points 

- (8as + 4a4 + 1) (4ae + 4a’ - 1)“” (a3 f a - 1)“’ F 

3 a”% (16aS + 24a7 - 52ae + 8aj - 20a4 -\ 20a3 + 14a - 11) = 0 

- (8a6 + 4a4 f 1) (4aa + 4a4 - I)‘/, (a9 f a - l)'/'r 
(5.3) 

7 a’& (16a" f 24a7 f 52aa + 8a5 $- 20a4 f 20a3 + 14a + 11) = 0 

(o = hv< (2R cos 0)-l) (5.4) 

To find the exact relation of a to UI Is very difficult, but It Is 
possible to obtain approximate formulas for small and large values of UJ 

If the value of UJ < 
8I 

it can be regarded as small; If the value of 
~1 > 2, It can be regarde as large. 

1. For small values of UJ and b = (aa +l - a-') h 
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jh (a) + 4abP (a) w ] bR cos 6 ---, a z 0.6823 + 0.065 w a 

- -% [h (a) - 4ubhz (a)~ f bR cos 8 -, a zz Vn’f2w (5.5) 

2. For small values of UI and ib, = (sa + 1 + u-‘)* 

[h (a) + 4abha (a) o 1 hR cos 0 ----) there are no stationary points 

fh (a) - 4abha (a) o I AR cos 0 -+ 
a z 0.6478 + 2ow9 (a < 1.8) 

n s I/, T/TG -% (a > 1%) 
(5.6) 

3. For large values of u) and b - (sa + 1 - a”“)* 

[h (a) + 4abha (a)~ I AR cos 0 -+ a z 1.02367 - 0.570” 

(5.7) 
[h (Q) - 4abh* (a)o 1 hR cos O;-, a =: I.02367 + 0.570-’ 

For large values of UJ and b, - (sa t 1 t 0-l ?! 
points I It Is possible to show that for a < 1. A 
can be neglected. 

Let us conalder the case of small values of w 
stationary phahe gives the following formula 

B 

there are no ststlonar 
the integrals in (4.12 T 

(UJ < +). The method of 

5 g (t) efkhff) dt = ikh (4 rf: i +) [* + Q (-+)] (5.8) 
(L 

where T is a stationary point of the function h(t) (a< T < , and k 
is a large parameter. The sign of the eIcponentia1 term (& is taken 
to be the same a8 the sign of a’(r). 

After some calculations we obtain from (4.10) 

‘irx 

G1 =I - 
J,f/9v”z” v25ga 

8R2 CO@ o I/RR COS 8 8R’ cos4 0 1 x 

!I d0 

%x 
I--$, 5 s l/F w4 

- 
vz5g2 g”ca 

16 (R cos 0 q%v/R eXP 8R4 COS4 0 
PX 

4R cos 0 1 
dt-I (hr -+ co) (5.9) 

To calculate the integral with respect to the variable 0 we again apply 
the method of stationary phase. In this case 13 I 0, from whence it follows 

(hR ---f 03, gtV4R - 00) (5.10) 
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We flndly obtain 

+ po (x - u, y -w, t - 41 G&dw dz = 

= 50 ix, Y) + *6 & \ \ so b - % Y -w) Gl(u,w, t)dudw- . 
--W-W 

tcQ co (5.11) 
g 

8 JfzTpn ss s PO b - u* Y - w, t - z) G, (u, w, z) dudw dv 
O--00--03 

fn the case of axial symmetry Formula (5.H) takes the form 

2x0;, 

%(r,t)~t~(r)+ g 
16 1/% 

~O(~)t”~;~exp(- $$)cyf+dRdp- 

0 0 

‘tce2n 

f5.12) 

RI = Ra + ra + 2rR cos cp (AR + 00, gP/ 4R + 00) 

Since the magnitude of k = (gV-‘f” ia large for water, Formulas (5.11) 
and (5.12) are suitable practically for all values of F different from 
zero l 

Formulas (5.11) and (5.12) give an asymptotic expreseion for determining 
the form of the free surface for small value8 of UJ (UI < &). Further aolu- 
tion Is possible only after prescribing the form of the funCtiOna C,(x, v) 
and po(x, YJ t). 

6. PwbSaulw OUOB. Por the mechanical Integration of the obtained 
results, let us consider some particular cases. 

1. Set 

PO= 0, to = A (2nr)“8 ff), r* = 2% + y” 

Prescribing such condltlons on the free surface correspond8 to an eleva- 
tion of a finite volume of fluid in a small area near the origin of the 
coordinate system. Stice r-la(r) -0 , we then obtain from (5.X) 

f, (r, t) = A 

Here the formula 

(hr 4 00, gC (4r)” - 00) 
(6.1) 
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has been used. 
Let UB assume that the oscillation of the level la observed at a given 

place. Then it follows from Formula (6.2) that due to the presence of the 
factor ta the wlltude of the oscillation at first increases and the period 
of the oscillation decreases. But due to the presence of the exponential 
factor the amplitude of the oscillation begins to tend to zero with time; 
at the place under consideration an unlimited reduction of the amplitudea 
and periods of oscillation are observed. This characteristic does not occur 
In the Cauchy-polsson problem for an Ideal fluid. The free surface of the 
vlscoue fluid In this case 18 a series of annular wave8 propagating with the 
velocity c - 2rt-I. 

2. Set 
50 = 0, PO = QS (4 8 (Y) 6 ($1 

This denotes that at the Mtial moment of time a pressure impulse acts 
on the surface of the fluid in a small area near the origin of the coordinate 
eystem. From Formula (5.11) we obtain 

(br --b 00, gtZ (b)-l 4 cc) (6.2) 
From the expression obtained It is seen that the picture of the free sur: 

face In general coincides with the corresponding picture for an ideal fluid. 
The difference conalsts In that for r - 0 there la no unllmlt~dOSr~eth of 
amplitude, which occur8 ln the case of the ideal fluid. For 
obtain the well-known result for an ideal fluid [5]. Formula Y 6.2) permlte 
a solution to the problem of sMp nave6 on the surface of a vlsooua fluid of 
infinite depth for straight and curved ship courle lines. 

3. Set 

50 = 0, p0 (2, y, 1) = QS (4 6 (~1 (1 - ~0s M 

It can be conaldered that an oeclllator Is acting on the fluid in a small 
area near the origin of the coorddnate system. Using Formula (5.11) and 
applying the method of stationary phase, we obtain 

(hr -b co, (4$-l gP - cm, g (u2r)-1 ---f 00) 

(6.3) 

@he free surface represents progressive wave8 whose amplitudes damp wfth 
distance from the origin of the coordinate system and which are propagating 
with the velocity c = QQ-’ . 

In all cases we obtain the well-known result8 for an ideal fluid at v-0. 
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